Рубрика «математика» - 130

В этой статье я хотел бы рассказать о моем исследовании на тему равенства классов P и NP. Оригинал статьи вы можете прочитать здесь.

Небольшое введение.

Вообще проблема равенства классов — одна из самых главных открытых математических проблем. Ведь при положительном ответе, программисты смогут гораздо оптимизировать многие аспекты программы, а так же деятели науки смогут например расшифровывать геном за короткое время. Однако, многие ученые склоняются к отрицательному ответу. Мне же, как программисту, не мыслим отрицательный ответ, да и если посмотреть, мы уже придумали алгоритмы, сокращающие время перебора во много раз, чем путем полного перебора.

В моей статье написано все достаточно замудрено и сложно для понимания, здесь я бы хотел рассказать по-простому об этом исследовании, а так же дополнить статью новыми интересными открытиями, а так же поделиться с вами этим полиномиальным алгоритмом, для быстрого вычисления комбинаторных задач такого рода.
Читать полностью »

Математические обозначения: Прошлое и будущее - 1

Перевод поста Стивена Вольфрама (Stephen Wolfram) "Mathematical Notation: Past and Future (2000)".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации


Содержание

Резюме
Введение
История
Компьютеры
Будущее
Примечания
Эмпирические законы для математических обозначений
Печатные обозначения против экранных
Письменные обозначения
Шрифты и символы
Поиск математических формул
Невизуальные обозначения
Доказательства
Отбор символов
Частотное распределение символов
Части речи в математической нотации


Стенограмма речи, представленной на секции «MathML и математика в сети» первой Международной Конференции MathML в 2000-м году.


Резюме

Большинство математических обозначений существуют уже более пятисот лет. Я рассмотрю, как они разрабатывались, что было в античные и средневековые времена, какие обозначения вводили Лейбниц, Эйлер, Пеано и другие, как они получили распространение в 19 и 20 веках. Будет рассмотрен вопрос о схожести математических обозначений с тем, что объединяет обычные человеческие языки. Я расскажу об основных принципах, которые были обнаружены для обычных человеческих языков, какие из них применяются в математических обозначениях и какие нет.

Согласно историческим тенденциям, математическая нотация, как и естественный язык, могла бы оказаться невероятно сложной для понимания компьютером. Но за последние пять лет мы внедрили в Mathematica возможности к пониманию чего-то очень близкого к стандартной математической нотации. Я расскажу о ключевых идеях, которые сделали это возможным, а также о тех особенностях в математических обозначениях, которые мы попутно обнаружили.

Большие математические выражения — в отличии от фрагментов обычного текста — часто представляют собой результаты вычислений и создаются автоматически. Я расскажу об обработке подобных выражений и о том, что мы предприняли для того, чтобы сделать их более понятными для людей.

Традиционная математическая нотация представляет математические объекты, а не математические процессы. Я расскажу о попытках разработать нотацию для алгоритмов, об опыте реализации этого в APL, Mathematica, в программах для автоматических доказательств и других системах.

Обычный язык состоит их строк текста; математическая нотация часто также содержит двумерные структуры. Будет обсуждён вопрос о применении в математической нотации более общих структур и как они соотносятся с пределом познавательных возможностей людей.

Сфера приложения конкретного естественного языка обычно ограничивает сферу мышления тех, кто его использует. Я рассмотрю то, как традиционная математическая нотация ограничивает возможности математики, а также то, на что могут быть похожи обобщения математики.
Читать полностью »

Пропорции в искусстве. Есть ли что-то лучше золотого сечения? Исследование более 1 000 000 старых и современных картин - 1

Перевод поста Майкла Тротта (Michael Trott) "Aspect Ratios in Art: What Is Better Than Being Golden? Being Plastic, Rooted, or Just Rational? Investigating Aspect Ratios of Old vs. Modern Paintings".
Код, приведенный в статье, можно скачать здесь.
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации


Содержание

Предисловие: золотое сечение — красивая математическая концепция
Работа Фехнера 1876 года об эстетичности прямоугольников и соотношениях сторон в картинах
Легкий старт: анализ «Artwork» — области базы знаний Wolfram Knowledgebase
Первая часть: особенности вероятностного распределения соотношений сторон
Соотношения сторон для разных веков, жанров и художников
Анализируя пять старых немецких музейных каталогов
Коллекция Кресса: четыре больших PDF файла
У нас представлены коллекции следующих галерей: Метрополитен (Metropolitan), институт искусств Чикаго, Эрмитаж, Национальная Галерея (National Gallery), Рейксмюзеум (Rijks) и Тейт Британия
Исключение в соотношениях сторон: Национальная портретная галерея
Веб-галерея изящных искусств: удобная база данных, готовая к использованию
Примечание II: важность точности в измерениях
WikiArt: еще один крупный веб-ресурс
Коллекция Французского государственного музея
Картины в итальянских церквях: высота есть всё
Смитсоновская коллекция
Большая коллекция картин в Великобритании
Нынешний рынок изящных искусств: рациональней чем когда-либо
Проданные картины: большинство написаны недавно, а у распределения длинный хвост
Восток: все показатели отличаются
Пропорции пакетов, автомобилей, этикеток, логотипов, эмблем, бумаги, банкнот, почтовых марок и фильмов
Продукты из супермаркета
Винные этикетки
Этикетки немецких сортов пива
Логотипы продуктов питания
Банкноты
Размеры автомобилей
Бумажные листы
Марки
Эмблемы команд NCAA (Национальной ассоциации студенческого спорта)
Эмблемы немецких футбольных клубов
Форматы фильмов
Заключение: так какое соотношение самое «лучшее»?


Картины великих мастеров — едва ли не самое прекрасное из человеческого наследия. Ими дорожили и восхищались, бережно хранили и продавали за сотни миллионов долларов, и, возможно, не по случайности они являются главной целью похитителей предметов искусства. Их композиции, цвета, детали, темы могут держать нас в восхищении и внимании часами. Но что можно сказать об отношении их внешних размеров — высоты к ширине?

В 1876 году немецкий ученый Густав Теодор Фехнер изучал человеческое восприятие прямоугольных форм, а после заключил, что прямоугольники с золотой пропорцией (то же, что и золотое сечение) наиболее приятны для человеческого глаза. Чтобы проверить свои экспериментальные наблюдения, Фехнер также проанализировал соотношения более десяти тысяч картин.
Читать полностью »

Центральная симметрия сетки - 1Исследуя одну задачу оптимизации, столкнулся с проблемой симметричности конфигураций при прямом переборе вариантов. Схожая проблема возникает в некоторых решениях задачи о восьми ферзях. Исследуя центральную симметрию прямоугольной сетки, я обнаружил революционный довольно интересный метод определения и проверки симметричных конфигураций с использованием чисел-«перевертышей».
Читать полностью »

image
Источник: geektimes.ru

В первой половине XX века, когда были изобретены первые вычислительные машины. Однако наряду с физически осязаемыми машинами появлялись и машины-концепции. Одной из них была «машина Тьюринга» — абстрактное вычислительное устройство, придуманное в 1936 году Аланом Тьюрингом — учёным, которого считают одним из основоположников информатики.

Его кругозор распространялся от квантовой теории и принципа относительности до психологии и неврологии. А в качестве способа познания и передачи своих знаний Тьюринг использовал аппарат математики и логики. Он находил решения, казалось бы, нерешаемых задач, но был сильнее всего увлечен идеей «Универсальной машины», способной вычислить всё, что в принципе вычислимо.Читать полностью »

Приветствую, %username%. Сегодня я расскажу о такой вещи, как коллаборативная фильтрация для сравнения двух наборов данных. После разработаем скрипт составления рейтинга схожести интересов между людьми.

Заинтересовались? Прошу под кат

Читать полностью »

Приветствую, %username%. Сегодня разработаем скрипт составления рейтинга схожести интересов между людьми.

Заинтересовались? Прошу под кат

Читать полностью »

Что такое пространство-время на самом деле? - 1

Перевод поста Стивена Вольфрама "What Is Spacetime, Really?".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.

Примечание: данный пост Стивена Вольфрама неразрывно связан с теорией клеточных автоматов и других смежных понятий, а также с его книгой A New Kind of Science (Новый вид науки), на которую из этой статьи идёт большое количество ссылок. Пост хорошо иллюстрирует применение программирования в научной сфере, в частности, Стивен показывает (код приводится в книге) множество примеров программирования на языке Wolfram Language в области физики, математики, теории вычислимости, дискретных систем и др.


Содержание

Простая теория всего?
Структура данных Вселенной
Пространство как граф
Может быть, нет ничего, кроме пространства
Что есть время?
Формирование сети
Вывод СТО
Вывод ОТО (Общей теории относительности)
Частицы, квантовая механика и прочее
В поисках вселенной
Ок, покажите мне Вселенную
Заниматься физикой или нет — вот в чем вопрос
Что требуется?
Но пришло ли время?


Сто лет назад Альберт Эйнштейн опубликовал общую теорию относительности — блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума).

Есть много различных моментов в теории, указывающих, что общая теория относительности — не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить, что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов — физической теории всего.

Во-первых, такой подход казался не слишком перспективным — хотя бы потому, что модели, которые я изучал (клеточные автоматы), казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году — в то время, когда вышла первая версия Mathematica, я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.
Читать полностью »

image

Здравствуйте, уважаемые читатели. После прочтения статьи у вас, вероятно, возникнет закономерный вопрос: «А зачем, собственно, это надо?». В силу этого сперва считаю необходимым заблаговременно сообщить, что искомый метод решения квадратных уравнений представлен скорее с морально-эстетической стороны математики, нежели со стороны практического сухого применения. Также заранее извиняюсь перед теми читателями, которые посчитают мои дилетантские изречения неприемлемыми. Итак, начнем забивать гвозди микроскопом.

Имеем алгебраическое уравнение второй степени (оно же квадратное) в общем виде:

image

Представим искомое уравнение как функцию:

image

Где, очевидно, необходимо найти такие значения аргумента image функции, в которых оная возвратила бы ноль.

Кажется, нужно просто решить квадратное уравнение с помощью теоремы Виета или через дискриминант. Но мы ведь собрались здесь не для этого. Давайте-ка лучше возьмем производную!
Читать полностью »

Распутывая историю Ады Лавлейс (первого программиста в истории) - 1

Перевод поста Стивена Вольфрама "Untangling the Tale of Ada Lovelace".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.


Содержание

Ранние годы Ады
Чарльз Бэббидж
Уровень развития этой области
Возвращаемся к Аде
Возвращаясь к Бэббиджу
Статья Ады
После статьи
После смерти Ады
Что стало с Бэббиджем?
Повторное открытие
О чем на самом деле писала Ада
Вычисление чисел Бернулли
Бэббидж vs. Ада?
Секретный ингредиент Бэббиджа
В большем масштабе
А что, если...
Какими они были?
Заключение


Ада Лавлейс родилась 200 лет назад. Для некоторых она является знаменательной фигурой в истории вычислительной техники; для других — изрядно переоцененной личностью. В течение долгого времени я пытался разобраться, как всё было на самом деле. И вот, к её двухсотлетию, я решил разобраться в том, что называл для себя "тайной Ады".

Получилось намного сложнее, чем я ожидал. Историки расходятся во мнениях. Личности в истории сложно изучать. Технологии трудно понять. Вся история переплетается с обычаями 19-го века британского высшего общества. И есть удивительное количество ошибочных сведений и неверных трактовок.

Но после некоторого исследования, в том числе просмотра большого количества оригинальных документов, я чувствую, что я, наконец, понял, кто есть Ада Лавлейс, и какова ее история. Эта история полна как увлекательных, захватывающих моментов, так и трагичных, разочаровывающих.

Это сложная история, и чтобы в ней разобраться, нужно будет о многом рассказать.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js