Рубрика «Блог компании SAS»

image

В прошлых статьях я попытался рассказать про основы ценообразования и построения дерева принятия решений покупателя для классического ритейла. В данной статье расскажу про очень нестандартный кейс и постараюсь убедить вас, что использовать машинное обучение не так сложно, как кажется. Статья менее техничная и скорее призвана показать, что можно начать с малого и это уже принесет ощутимую пользу для бизнеса.

Читать полностью »

Вия, Уая, Вая, Вайя – “трудности перевода”, или что скрывается за новой платформой SAS Viya (Вайя) - 1

   В сети можно найти огромное количество разнообразных статей о методах использования алгоритмов математической статистики, о нейронных сетях и в целом о пользе машинного обучения. Данные направления способствуют существенному улучшению жизни человека и светлому будущему роботов. Например, заводы нового поколения, способные работать полностью или частично без вмешательства человека или машины с автопилотом.

  Разработчики объединяют комбинации этих подходов и методов машинного обучения в различные направления. Эти направления впоследствии получают названия, оригинальные и не очень, например: IOT (Internet Of Things), WOT (Web Of Things), Индустрия 4.0 (Industry 4.0), Artificial Intelligence (AI) и другие. Данные концепции объединяет то, что их описание является верхнеуровневым, то есть не рассматриваются ни конкретные инструменты и технологии, ни уже готовые к внедрению системы, а основной целью является визуализация желаемого результата. Но технологии уже существуют, хотя часто не имеют единой платформы.
Читать полностью »

image
Самая главная формула успеха — знание, как обращаться с людьми. Теодор Рузвельт

В прошлой статье попытался рассказать про основы аналитики ценообразования. Теперь давайте поговорим о более интересных вещах.

Вы когда-нибудь задумывались о том, почему вы покупаете определенные продукты в магазинах, как выбираете среди множества аналогов? Скорее всего, четкого ответа под все возможные походы в магазин дать не получится, многие из них спонтанны. Но общая идея очевидна – при походе в магазин вы пытаетесь закрыть имеющуюся потребность (в еде, гаджетах, развлечениях, блэкджеке). В данной статье на примере продуктовых ритейлеров расскажу об имеющемся опыте, как используя некоторые базовые логические предположения и анализ сообществ в графах, можно определить, как именно покупатели выбирают товар.

Читать полностью »

В предыдущей статье мы разбирались, как делать персонализированные предложения на сайте интернет-магазина. Сегодня расскажем, как собирать данные о поведении его посетителей, чтобы затем строить отчёты по воронке продаж, догонять «брошенные корзины» и подбирать товарные рекомендации. Посмотрим, почему для качественной персонализации недостаточно простой веб аналитики и как лучше понять своего клиента с помощью SAS Customer Intelligence 360.

Собираем данные о поведении клиентов на сайте - 1
Читать полностью »

Как мы искали признаки врачебных ошибок - 1

В 2006 году в голове моего тестя разорвалась аневризма и его свалил инсульт. К вечеру того дня он уже шутил и порывался ходить по больничной палате. Повторный инсульт, который случился под наблюдением врачей, его мозг не выдержал — тесть перестал разговаривать, ходить и узнавать родных. В другом госпитале его поставили на ноги, но из-за врачебной ошибки при первоначальном лечении он навсегда лишился речи, а его личность изменилась до неузнаваемости.

То, что с ним произошло, называется внутрибольничным инсультом и это один из маркеров (или иначе — триггеров) системных проблем в медицинской организации. Их нужно анализировать, чтобы снизить число предотвратимых врачебных ошибок в стационарах и повысить качество лечения пациентов.

В США этим вопросом озадачились в начале 2000-х. Массачусетский Institute for Healthcare Improvement (IHI) разработал методику IHI Global Trigger Tool for Measuring Adverse Events, которую затем внедрили передовые клиники США и Европы.

В 2016 году мы (российский офис SAS) попытались создать систему анализа медицинских триггеров по методике IHI в России. Расскажу, что из этого вышло.
Читать полностью »

Как выявляют риски в госконтроле и зачем для этого машинное обучение - 1

В предыдущей статье на тему государственного риск-менеджмента мы прошлись по основам: зачем государственным органам управлять рисками, где их искать и какие существуют подходы к оценке. Сегодня поговорим о процессе анализа рисков: как выявить причины их возникновения и обнаружить нарушителей.
Читать полностью »

Данная статья может быть интересна маркетологам, которые задумываются или уже пробуют реализовывать целевые коммуникации с клиентами в цифровых каналах. Также она может быть полезна специалистам по сайтам с точки зрения организации интеграции с CRM системой. Пользователи решений по клиентской аналитике от SAS узнают, каким образом можно расшить свои возможности, настроив правильное управление клиентским опытом в цифровых каналах.

Покупатели сегодня способны быстро переключаться между поставщиками сервисов на большинстве конкурентных рынков. Например, одновременно пользуясь продуктами от разных банков или посещая разные продовольственные магазины. Часто первичное или повторное привлечение клиента бывает дорогостоящим, в то время как продажи продуктов или сервисов текущим клиентам осуществляются гораздо проще. Не берем в расчет кейсы, когда дополнительные продажи невозможны ввиду специфики продукта или бизнеса. Такое положение вещей вполне очевидно: про клиентов известно больше, чем про «не клиентов». Правильно используя эту информацию, можно увеличить шансы совершить вторичную продажу.
Читать полностью »

Приглашаем на итоги конкурса по анализу данных - 1

В эту пятницу (15 декабря) мы приглашаем читателей Хабра присоединиться к онлайн трансляции награждения победителей конкурса по прогнозированию невозврата кредита. Состязание длилось 4 месяца, задача была предоставлена Банком Хоум Кредит (собственно, как и данные).

Мы наградим победителей и призеров, послушаем презентации их решений.

  • 1 место и Академический приз — Анзор Березгов
  • 2 место — Иван Тимошилов
  • 3 место — Александр Дьяконов
  • Приз SAS — Дарья Соболева

Читать полностью »

Меня зовут Максим, и я работаю консультантом по клиентской аналитике в компании SAS (это не спецназ и не авиакомпания, а институт). Мы оцениваем применимость новых технологий в бизнес-процессах различных отраслей и на основе этого делаем проекты. В том числе в цифровом маркетинге. Самыми интересными результатами нашей работы я буду делиться с вами в этой и последующих публикациях.

Сегодняшний герой — облачный продукт для цифрового маркетинга SAS Customer Intelligence 360, который позволяет централизованно собирать и обрабатывать данные о клиентах. Разбор возможностей и примеры работы — под катом.

Цифровой маркетинг в режиме одного окна: разбираем облачные продукты SAS - 1

Читать полностью »

SAS: мы анализировали данные и обучали модели задолго до того, как это стало модным - 1

Наша аналитическая платформа работает в WalMart, Bank of America, Bank of China, Сбербанке, МТС. SAS как предмет преподают в МГУ, ВШЭ, МИФИ, МГТУ им. Баумана, МЭИ, МИИТ и других ВУЗах. А под катом — наша краткая история-знакомство, с которой мы хотим открыть наш блог на Хабре.
Читать полностью »