Рубрика «машинное обучение» - 247

Накануне новогодних праздников мы решили поделиться с вами подборкой самых интересных материалов, которые вышли в блоге Университета ИТМО (и не только) в уходящем году: от научных публикаций до рассказов о предпринимателях и от робототехники до биоинформатики.

Итоги года: Большой предновогодний дайджест Университета ИТМО - 1Читать полностью »

Отчёт со Sberbank Data Science Day: решения, победители, интервью / Хабрахабр

Читать полностью »

Сегодня в блоге программы «Менеджмент игровых интернет-проектов», мы подготовили и перевели для вас статью, написанную главным редактором Kill Screen Заком Баджором про искусственный интеллект на примере игры The Suspect и фильма “Она”.

Как искусственный интеллект формирует будущее интерактивных игр - 1
Читать полностью »

Сбор данных Atari 2600 для обучения с подкреплением - 1
Сайт atarigrandchallenge.com, предназначенный для сбора данных

Всем привет! “Искусственный интеллект победил человека в Го”, “Искусственный интеллект играет в Atari 2600 лучше чем человек”, “Компьютерные боты приблизились по уровню игры в Doom к человеческим игрокам” —  последнее время таких заголовков становится всё больше и больше. Появляются многочисленные среды для разработки и тестирования алгоритмов обучения с подкреплением (Reinforcement Learning): OpenAI Universe, Microsoft Minecraft Malmo, DeepMind SCII. И кто знает, что будет завтра?

Для своей магистерской работы я хочу собрать коллекцию реплеев игр для Atari 2600, сыгранных людьми. В дальнейшем я использую ее для обучения ботов и выложу все собранные данные в открытый доступ, чтобы все желающие могли использовать их для своих исследований.
Читать полностью »

Машинное обучение как новый инструмент бизнес-анализа - 1
Бизнес-анализ эволюционировал от статичных отчётов, рассказывающих, что произошло, до интерактивных информационных панелей, с помощью которых вы можете углубиться в данные и попытаться понять, почему это произошло. Новые источники больших данных, включая устройства интернета вещей, подталкивают бизнес перейти от пассивной аналитики — когда мы смотрим на какой-то период в прошлом и ищем тенденции, или раз в день проверяем на наличие проблем — к активной аналитике, способной предупредить о чём-то заранее и позволяющей создавать информационные панели с обновлением в реальном времени. Это помогает лучше использовать операционные данные, которые куда полезнее, если они получены «только что», пока ещё не изменились условия.Читать полностью »

Kaggle: Allstate Claims Severity - 1

Хотелось бы описать решение к недавнему соревнованию по машинному обучению Allstate Claims Severity. (Мой результат 40 из 3055). Так как это это соревнование типа «ансамблевое рубилово», как правило, обсуждение решений вызывает нездоровые священные войны между теми, кто пробовал участвовать и теми кто нет, так что для начала я сделаю небольшое лирическое отступление.

Заранее извиняюсь за обилие английских слов. Какие-то я не знаю как перевести, а какие-то мне переводить не хочется.

Мне нравится думать о машинном обучении как о трех мало связанных между собой направлениях, что я и попытался изобразить на картинке выше, и каждое из этих направлений преследует свои цели.

Например, в академической среде твоя производительность, да и вообще личная крутизна меряется числом и качеством опубликованных статей — и тут важна новизна идей, но насколько эти идеи можно применить на практике прямо сейчас это дело десятое.

В бизнесе сколько денег твои модели приносят компании и тут важна интерпретируемость, масштабируемость, скорость работы и прочее.

В соревновательном машинном обучении задача — всех победить. То есть то, что модель будет немасштабируемой, и тренировать ее надо неделями — это приeмлимо.

Читать полностью »

Привет всем! Каждую зиму в русских (да и не только) городах появляется зловредный гололед. Множество людей подскальзывается и травмирует различные части тела. Скажете, эта проблема должна решаться коммунальщиками — да, так и есть, но они очень часто не доглядывают за состоянием тротуаров и дворовых тропинок, а может быть и просто не знают, куда нужно смотреть. Чтобы хоть как-то улучшить ситуацию, в решение проблемы все больше должны включаться современные технологии. Итак, сегодня поговорим о создании системы оценки степени заледенелости улиц, основанной на статистике падений людей. Под катом машинное обучение, облака и мобильные приложения.

3 примера использования системы
Читать полностью »

Мы решили пофантазировать и заглянуть в будущее на 1 год, на 10 и на 69 лет вперед. Под катом вы найдете 17 прогнозов от женщин-исследователей из подразделения Microsoft Research на 2017 и на 2027 годы, а также поздравительную открытку, которая перенесёт вас в 2086 год.

17 прогнозов на 2017 год: исследователи корпорации Microsoft — о том, чего ожидать в 2017 году и через десять лет - 1
Читать полностью »

Традиционно провожаем уходящий 2016 год подборкой ключевых анонсов от корпорации Microsoft. Под катом мы собрали десять самых ярких и запоминающихся новостей.

Топ-10 ключевых анонсов от Microsoft в 2016 году - 1
Читать полностью »

Хабр, привет. Сегодня мы подготовили еще 12 примеров того, как технологии больших данных приносят компаниям деньги.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js