Рубрика «plotly»

image

Всем привет!

Сегодня предлагаю погрузиться в один из удобнейших веб-фреймворков в связке c Python под названием Dash. Появился он не так давно, пару лет назад благодаря разработчикам фреймворка plotly. Сам Dash является связкой Flask, React.Js, HTML и CSS.

Выступление Криса Пармера на PLOTCON 2016

Давайте сразу установим фреймворк. Обновленные версии уточняйте тут.

pip install dash==0.31.1  # The core dash backend
pip install dash-html-components==0.13.2  # HTML components
pip install dash-core-components==0.38.1  # Supercharged components
pip install dash-table==3.1.7  # Interactive DataTable component (new!)

Друзья, если вы действительно хотите разобраться в данном фреймворке, читайте публикации до конца, так как зачастую сначала следуют примеры, а уже после детальный обзор кода. Если вам все равно непонятно — советую читать документацию по Dash на английском языке в оригинале. Также в рунете есть несколько статей, которые объясняют концепции, которые я решил пропустить в данном туториале.
Читать полностью »

Недавно в журнале Science была статья “Огромный архив резюме раскрыл самых путешествующих учёных” ( “Vast set of public CVs reveals the world’s most migratory scientists” ) — где на основе публичных данных из системы orcid была продемонстрирована статистика переезда учёных из страны в страну. Все данные использованные для статьи тоже были выложены в октрытый доступ, и я решил посмотреть куда-же разьезжаются учёные из России в общем, ну и из родного Физтеха в частности.

Читать полностью »

image

Мы в Skyeng очень много внимания уделяем анализу данных. Он позволяет нам правильно планировать работу и распределять ресурсы между различными задачами. Сегодня разработчик аналитики Глеб Сологуб расскажет, как он собрал для нас инфраструктуру сбора и анализа данных по всему нашему зоопарку сервисов и приложений, уложившись в годовой бюджет 12 тыс долларов.

Читать полностью »

Открытый курс машинного обучения. Тема 2: Визуализация данных c Python - 1

Привет всем, кто начал проходить курс! Новые участники, добро пожаловать! Второе занятие посвящено визуализации данных в Python. Сначала мы посмотрим на основные методы библиотек Seaborn и Plotly, затем поанализируем знакомый нам по первой статье набор данных по оттоку клиентов телеком-оператора и подглядим в n-мерное пространство с помощью алгоритма t-SNE.

Напомним, что к курсу еще можно подключиться, дедлайн по 1 домашнему заданию – 6 марта 23:59.

Сейчас статья уже будет существенно длиннее. Готовы? Поехали!

Читать полностью »

Немного про кино или как делать интерактивные визуализации в python - 1

Введение

В этой заметке я хочу рассказать о том, как можно достаточно легко строить интерактивные графики в Jupyter Notebook'e с помощью библиотеки plotly. Более того, для их построения не нужно поднимать свой сервер и писать код на javascript. Еще один большой плюс предлагаемого подхода — визуализации будут работать и в NBViewer'e, т.е. можно будет легко поделиться своими результатами с коллегами. Вот, например, мой код для этой заметки.

Для примеров я взяла скаченные в апреле данные о фильмах (год выпуска, оценки на КиноПоиске и IMDb, жанры и т.д.). Я выгрузила данные по всем фильмам, у которых было хотя бы 100 оценок — всего 36417 фильмов. Про то, как скачать и распарсить данные КиноПоиска, я рассказывала в предыдущем посте.

Читать полностью »