Рубрика «визуализация данных» - 27

Жуки атакуют - 1 Я уже делал на Хабре пост про поражения сибирских лесов опасным вредителем — уссурийским полиграфом. Этот чрезвычайно плодовитый и опасный жук способен за короткое время уничтожить огромные площади пихтовых лесов и, к сожалению, это получается у него куда лучше, нежели усилия людей по борьбе с опасным насекомым. Основной проблемой мониторинга лесов в зоне поражения жуком является нехватка специалистов и современных методик быстрого и точного анализа состояния пораженного леса. Однако, некоторые позитивные моменты всё же есть. На схватку с опасным вредителем выходят беспилотные летательные аппараты. БПЛА. Вернее сказать вылетают…

Читать полностью »

Старожилы, наверное, и не вспомнят, но в конце 2017-го года в обсуждениях в интернете была распространена мысль о том, что в трендах YouTube часто встречаются «накрученные» видео.

Поэтому накануне нового 2018-го года я написал утилиту для сбора информации о видео, которые попали в тренды. Для каждого видео запрашивается название, список тегов, дата создания, а так же ведется история изменений лаков/дизлайков/просмотров. Разработку вел на TypeScript для NodeJS, сам код выложен на GitHub.

Как итог, сейчас есть возможность строить красивые графики:
График изменения количества лайков и дизлайков

Так же есть возможность строить графики изменения трендов по ключевым словам. Всего за 2018-й год была собрана информация по 29271 видео. Сбор статистики ведется и сейчас.

Читать полностью »

В начале 2018 года у нас активно пошел процесс цифровизации производства и процессов в компании. В секторе нефтехимии это не просто модный тренд, а новый эволюционный шаг в сторону повышения эффективности и конкурентоспособности. Учитывая специфику бизнеса, который и без всякой цифровизации показывает неплохие экономические результаты, перед «цифровизаторами» стоит непростая задача: всё-таки менять устоявшиеся процессы в компании — довольно кропотливая работа.

Наша цифровизация началась с создания двух центров и соответствующих им функциональных блоков.

Это «Функция цифровых технологий», в которую включены все продуктовые направления: цифровизация процессов, IIoT и продвинутая аналитика, а также центр управления данными, ставший самостоятельным направлением.

Как мы строим систему обработки, хранения и анализа данных в СИБУРе - 1

И вот как раз главная задача дата-офиса заключается в том, чтобы полноценно внедрить культуру принятия решений, основанных на данных (да, да, data-driven decision), а также в принципе упорядочить всё, что касается работы с данными: аналитика, обработка, хранение и отчетность. Особенность в том, что все наши цифровые инструменты должны будут не только активно использовать собственные данные, то есть те, которые генерируют сами (например, мобильные обходы, или датчики IIoT), но и внешние данные, с четким пониманием, где и зачем их нужно использовать.

Меня зовут Артем Данилов, я руководитель направления «Инфраструктура и технологии» в СИБУРе, в этом посте я расскажу, как и на чем мы строим большую систему обработки и хранения данных для всего СИБУРа. Для начала поговорим только о верхнеуровневой архитектуре и о том, как можно стать частью нашей команды.
Читать полностью »

Привет! Представляем вашему вниманию перевод статьи "A Full-Scale Security Visualization Effectiveness Measurement and Presentation Approach".

Комплексный подход к визуализации событий безопасности и измерению её эффективности - 1

От автора перевода

Визуализация оказывает неоценимую помощь экспертам в получении выводов и знаний об объекте исследований, особенно, если такие исследования связаны с обработкой большого объёма данных. При этом, выбор способов визуализации, как правило, носит творческий характер и не является обоснованным выбором на основании каких-либо количественных оценок. В статье предпринята попытка получения количественных оценок визуализации.

Кроме того, необходимо отметить, что вопросам исследования визуализации в русскоязычных источниках уделяется мало внимания. Исследования, описанные в статье, находятся на стыке нескольких областей знаний: безопасность информации, психологии, науки о данных, что позволяет читателю познакомиться с ранее неизвестными для него темами. Также интерес представляет обширная библиография по теме изучения визуализации.

Основные термины, используемые в тексте статьи, отмечены курсивном и для них в скобках указано значение иностранного термина. Определения таких терминов приведены после текста статьи.
Читать полностью »

«Каждый ученый, безусловно, несет часть профессиональной ответственности за пропаганду общественного понимания науки»

Привлечение дизайна к науке

Дизайн может принести больше пользы науке, чем наука дизайну

image

Упражнение на подготовительном курсе в Ульмской школе дизайна. 1958-59

У дизайна и науки непростые отношения. Или, если говорить точнее, у дизайна непростые отношения с наукой. У науки, с другой стороны, почти нет никаких отношений с дизайном, и она обычно не обращает никакого внимания на волнения и беспокойства в мире дизайна.

Исторически, дизайн практически никак не был связан с наукой. Как легко можно понять по названию, декоративно-прикладное искусство, являющееся одной из основ современного дизайна, было ближе к искусству как таковому нежели к науке. Дизайнеры и художники часто обучаются на одном факультете в университете и мыслят почти одинаково. На протяжении XX века искусство вдохновляло дизайн, а иногда и наоборот. Для многих дизайн был прежде всего стремлением к элегантной и выразительной эстетике продуктов и предметов, которые окружают нас в нашей повседневной жизни.

Поэтому исторически дизайн намного ближе к изобразительному искусству, чем к науке. Но все не так просто.
Читать полностью »

Вступление

В последнее время активно изучаю язык программирования Python. Особенно меня заинтересовало использование Python в распознавании и классификации лиц. В статье я попробую применить распознавание лиц для сериала «Теория Большого взрыва».

«Теория Большого взрыва» и практика применения Python - 1
Читать полностью »

Data Science — наука о данных, возникшая на стыке нескольких обширных направлений: программирования, математики и машинного обучения. Этим обусловлен высокий порог вхождения в профессию и необходимость постоянно получать новые знания.

Ключевыми навыками для начинающих специалистов являются:

  • умение писать код (Python);
  • способность визуализировать свои результаты;
  • понимание того, что происходит «под капотом».

На эти три категории разделены книги, которые специалисты Plarium Krasnodar подобрали для читателей с начальными знаниями в Data Science.

Data Science: книги для начального уровня - 1Читать полностью »

Анализ результатов 2018 Kaggle ML & DS Survey - 1

Kaggle — известная платформа для проведения соревнований по машинному обучению на которой количество зарегистрированных пользователей перевалило за 2.5 миллиона. В соревнованиях участвуют тысячи data scientist из разных стран, и Kaggle стал интересоваться тем, что из себя представляет аудитория. В октябре 2018 года был организован уже второй опрос и на него ответило 23859 людей из 147 стран.

В опросе было несколько десятков вопросов на самые разные темы: пол и возраст, образование и сфера работы, опыт и навыки, используемые языки программирования и софт и многое другое.
Но Kaggle — не просто площадка для соревнований, там также можно публиковать исследования данных или решения соревнований (они называются кернелы и похожи на Jupyter Notebook), поэтому датасет с результатами опроса был выложен в открытый доступ, и было организовано соревнование на лучшее исследование этих данных. Я тоже принимал участие и пусть денежный приз не получил, но мой кернел занял шестое место по количеству голосов. Я хотел бы поделиться результатами моего анализа.

Данных довольно много и их можно рассматривать с разных сторон. Меня заинтересовали различия между людьми из разных стран, поэтому большая часть исследования будет сравнивать людей из России (поскольку мы тут живём), Америки (как самая продвинутая страна в плане DS), Индии (как бедная страна с большим количеством DS) и других стран.

Большая часть графиков и анализа взята из моего кернела (желающие могут там увидеть код на Python) но есть и новые идеи.

Читать полностью »

Вия, Уая, Вая, Вайя – “трудности перевода”, или что скрывается за новой платформой SAS Viya (Вайя) - 1

   В сети можно найти огромное количество разнообразных статей о методах использования алгоритмов математической статистики, о нейронных сетях и в целом о пользе машинного обучения. Данные направления способствуют существенному улучшению жизни человека и светлому будущему роботов. Например, заводы нового поколения, способные работать полностью или частично без вмешательства человека или машины с автопилотом.

  Разработчики объединяют комбинации этих подходов и методов машинного обучения в различные направления. Эти направления впоследствии получают названия, оригинальные и не очень, например: IOT (Internet Of Things), WOT (Web Of Things), Индустрия 4.0 (Industry 4.0), Artificial Intelligence (AI) и другие. Данные концепции объединяет то, что их описание является верхнеуровневым, то есть не рассматриваются ни конкретные инструменты и технологии, ни уже готовые к внедрению системы, а основной целью является визуализация желаемого результата. Но технологии уже существуют, хотя часто не имеют единой платформы.
Читать полностью »

Все, кто следит за новостями рынка САПР, знают, что компания Dassault Systèmes провела
2 октября интерактивное мероприятие SOLIDWORKS FORUM, на котором представила обновленную систему проектирования SOLIDWORKS 2019.

Новая версия SOLIDWORKS — огромный шаг вперед. Изменен интерфейс продукта, значительно улучшена производительность. Обо всем этом мы расскажем ниже.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js