Рубрика «clang» - 5

PVS-Studio vs LLVMОколо двух месяцев назад я написал статью о проверке компилятора GCC с помощью анализатора PVS-Studio. Идея статьи была следующая: предупреждения GCC — это хорошо, но недостаточно. Надо использовать специализированные инструменты анализа кода, например, PVS-Studio. В качестве подтверждения я показал ошибки, которые PVS-Studio смог найти в коде GCC. Ряд читателей заметили, что качество кода GCC и его диагностики так себе, в то время как компилятор Clang современен, качественен, свеж и молод. В общем Clang — это ого-го! Что ж, значит пришло время мне проверить с помощью PVS-Studio проект LLVM.
Читать полностью »

Сегодня на /r/C_Programming задали вопрос о влиянии const в C на оптимизацию. Я много раз слышал варианты этого вопроса в течении последних двадцати лет. Лично я обвиняю во всём именование const.

Читать полностью »

PVS-Studio признаётся в любви к LinuxЭто заметка о любви. О любви статического анализатора кода PVS-Studio к замечательной открытой операционной системе Linux. Эта любовь молода, трогательная и ранима. Этой любви нужно помочь укрепиться. Вы поможете, если заранее запишитесь в добровольцы для тестирования beta-версии PVS-Studio for Linux.
Читать полностью »

Писать многопоточные приложения нелегко. Некоторые средства статического анализа кода позволяют помочь разработчикам, давая возможность чётко определить политики поведения потоков и обеспечить автоматическую проверку выполнения этих политик. Благодаря этому появляется возможность отлавливать состояния гонки потоков или их взаимной блокировки. Эта статья описывает инструмент анализа потокобезопасности С++ кода, встроенный в компилятор Clang. Его можно включить с помощью опции командной строки −Wthread−safety. Данный подход широко распространён в компании Google — полученные от его применения преимущества привели к повсеместному добровольному использованию данной технологии различными командами. Вопреки популярному мнению, необходимость в дополнительных аннотациях кода не стала бременем, а наоборот, дала свои плоды выражающиеся в упрощении поддержки и развития кода.

Предисловие

Писать многопоточные приложения нелегко, поскольку разработчикам приходится представлять себе все многочисленные варианты взаимодействия потоков и использования ими ресурсов. Опыт показывает, что программистам не помешал бы для этого некоторый инструментарий. Многие библиотеки и фреймворки налагают на программиста некоторые требования по потокобезопасности при их использовании, однако далеко не всегда эти требования чётко указаны. И даже в тех случаях, когда всё хорошо задокументировано — это всего лишь выраженная в тексте документации просьба, а не строгая автоматическая проверка.

Средства статического анализа кода помогают разработчикам определить политики потокобезопасности и проверять их при сборке проекта. Примером таких политик могут быть утверждения «мьютекс mu всегда должен использоваться при доступе к переменной accountBalance» или «метод draw() должен вызываться только из GUI-потока». Формальное определение политик даёт два основных преимущества:

  1. Компилятор может показывать предупреждения в случае обнаружения нарушений политик. Нахождение ошибки на этапе компиляции значительно дешевле, чем отладка упавших юнит-тестов или, что ещё хуже, появление «плавающих» багов в продакшн-коде.
  2. Явно выраженные в коде спецификации потокобезопасности играют роль документации. Подобная документация очень важна для библиотек и SDK, поскольку программистам нужно знать, как их корректно использовать. Данную информацию, конечно, можно поместить в комментарии, однако практика показывает, что подобные комментарии имеют свойство устаревать, поскольку при обновлении кода они не всегда меняются синхронно.

Данная статья рассказывает о применении данного подхода в Clang, хотя изначально он был разработан для GCC, однако версия для GCC более не поддерживается. В Clang данная возможность реализована как предупреждение компилятора. В Google на данный момент вся кодовая база C++ компилируется с включенным по умолчанию анализом потокобезопасности.
Читать полностью »

Суперскалярный стековый процессор: оптимизация - 1
Продолжение серии статей, разбирающих идею суперскалярного процессора с
OoO и фронтендом стековой машины. Тема данной статьи — оптимизация обращений к памяти.

Предыдущие статьи:
1 — описание работы на линейном куске
2 — вызов функций, сохраняем регистры
3 — вызов функций, взгляд изнутри
Читать полностью »

SFML и Xcode (Mac OS X) - 1

От переводчика: данная статья является четвертой в цикле переводов официального руководства по библиотеке SFML. Прошлую статью можно найти тут. Данный цикл статей ставит своей целью предоставить людям, не знающим язык оригинала, возможность ознакомится с этой библиотекой. SFML — это простая и кроссплатформенная мультимедиа библиотека. SFML обеспечивает простой интерфейс для разработки игр и прочих мультимедийных приложений. Оригинал статьи можно найти тут. Начнем.
Читать полностью »

Пришла мне как-то в голову идея, а можно ли взять блок и отдать для target-action?
Есть готовые решения, как к примеру BlocksKit и другие библиотеки, однако их решение заключается в сохранении блока, установкой таргета и вызова блока из указанного селектора.

Зачем тогда нужна эта статья?

Я захотел создать способ генерации селектора, по которому будет вызван блок. Что здесь сложного, скажете вы? imp_implementationWithBlock + class_addMethod и дело закрыто. Но при этом подходе есть одно серьезное требование, это первый аргумент блока — владелец метода.

Как обойти это требование и сделать такое?

    [button addTarget:self action:[self ax_lambda:^(UIButton *sender, UIEvent *event){
        NSLog(@"click on button %@, event = %@", sender, event);
    }] forControlEvents:UIControlEventTouchUpInside];

    [button addTarget:self action:[self ax_lambda:^{
        NSLog(@"click");
    }] forControlEvents:UIControlEventTouchUpInside];

Или даже вот так

    __block NSInteger sum = 0;
    [self performSelector:[self ax_lambda:^(NSNumber *argA, NSNumber *argB) {
        sum = [argA integerValue] + [argB integerValue];
    }] withObject:@(2) withObject:@(3)];
    //sum — 5

    SEL selSum = [self ax_lambda:^NSInteger(NSInteger argA, NSInteger argB){
        return argA + argB;
    }];
    NSInteger(*funcSum)(id, SEL, NSInteger, NSInteger) = (NSInteger(*)(id, SEL, NSInteger, NSInteger))objc_msgSend;
    NSInteger sum2 = funcSum(self, selSum, 2, 3);
    //sum2 — 5

Реализация оказалась настолько интересной, что я решил написать об этом.
Читать полностью »

XGBoost — С++ библиотека, реализующая методы градиентного бустинга, которую все чаще можно встретить в описаниях алгоритмов-победителей на Kaggle. Для использования из R или Python есть соответствующие обвязки, но саму библиотеку необходимо собрать из исходников. Запустив make, я увидел массу ошибок, сообщающих о ненайденных хидерах и неподдерживаемом OpenMP. Ну, не впервой.
Читать полностью »

Каждый С-программист с опытом накапливает привычный багаж техник и идиом. Зачастую бывает сложно понять, как сделать то же самое в новом языке. Так вот, вашему вниманию предлагается коллекция распространенных паттернов на C и их эквивалентов на D. Если вы собираетесь перевести свою программу с C на D или ещё сомневаетесь стоит ли это делать, то эта статья для вас.

Читать полностью »

NSLog(123456789) !=123456789Статья расчитана на новичков в Objective-C и рассказывает об одном способе выстрелить себе в ногу. Мы попытаемся создать два различных объекта NSString с одинаковым текстом, исследуем реакцию на это различных компиляторов, а также узнаем, при каких условиях NSLog(@"%@", @«123456789») выведет совсем не «123456789».

Объекты NSString и указатели

Как вы думаете, что выведет следующий код?Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js