Рубрика «Apache»

Сделать свою собственную SQL-базу данных или запускать SQL-запросы в NoSQL-базе данных — кажется, это очень непростая задача.  А если мы говорим о распределенной БД, то сложность возрастает многократно. Но, к счастью, Apache Calcite — фреймворк с открытым кодом — поможет сделать это довольно легко.

Роман КондаковЧитать полностью »

image

В основе Apache Kafka находится лог — простая структура данных, которая использует последовательные операции, работающие в симбиозе с оборудованием. Эффективное использование дискового буфера и кэша процессора, prefetch, передача данных zero-copy и много других радостей — все это благодаря построенной на логе структуре, которая славится своей эффективностью и пропускной способностью. Обычно эти преимущества, а еще базовая реализация в виде лога коммитов, — первое, что люди узнают о Kafka.

Код самого лога составляет относительно малую часть всей системы. Гораздо больше занимает код, который отвечает за организацию партиций (т. е. логов) на множестве брокеров в кластере — назначает лидеров, обрабатывает сбои и т. д. Этот код и делает Kafka надежной распределенной системой.

Раньше важной частью работы распределенного кода был Apache ZooKeeper. Он хранил самые важные метаданные системы: где находятся партиции, кто из реплик лидер и т. д. Читать полностью »

Мотивом для написания данной статьи послужил тот факт, что на habr.com участилось появление материалов маркетингового характера про Apache Kafka. А также тот факт, что из статей складывается впечатление что пишут их немного далекие от реального использования люди — это конечно же только впечатление, но почему-то в большинстве своем статьи обязательно содержат сравнение Apache Kafka с RabbitMQ, причем не в пользу последнего. Что самое интересное — читая подобные статьи управленцы без технического бэкграунда начинают тратить деньги на внутренние исследования, чтобы ведущие разработчики и технические директора выбрали одно из решений. Так как я очень жадный/домовитый, а также так как я сторонник тезиса "В споре НЕ рождается истина" предлагаю вам ознакомится с другим подходом — почти без сравнения разных брокеров.

Читать полностью »

Привет!

Среди рассматриваемых нами фреймворков для сложной обработки данных на Java есть и Apache Flink. Хотим предложить вам перевод неплохой статьи из блога Analytics Vidhya на портале Medium, чтобы оценить читательский интерес. Не стесняйтесь участвовать в голосовании!

Как создать приложение для потоковой обработки данных при помощи Apache Flink - 1
Читать полностью »

Apache Software Foundation опубликовала релиз платформы Apache Hadoop 3.3.0 - 1

Apache Software Foundation выпустила свежий релиз своей платформы — Apache Hadoop 3.3.0. С момента последнего обновления прошло полтора года. Сама платформа представляет собой инструмент для организации распределенной обработки больших объемов данных с использованием MapReduce. Hadoop включает в себя набор утилит, библиотек и фреймворков для разработки и выполнения распределенных программ, которые способны работать на кластерах из тысяч узлов.

Для Hadoop создана специализированная файловая система Hadoop Distributed File System (HDFS), которая обеспечивает резервирование данных и оптимизацию работы MapReduce-приложений. HDFS предназначена для хранения файлов больших размеров, распределенных между отдельными узлами вычислительного кластера. Благодаря своим возможностям Hadoop используется крупнейшими компаниями и организациями. Google даже предоставила Hadoop право на использование технологий, которые затрагивают патенты, связанные с методом MapReduce.
Читать полностью »

Привет! Представляю вашему вниманию перевод статьи «Diving Into Delta Lake: Schema Enforcement & Evolution» авторов Burak Yavuz, Brenner Heintz and Denny Lee.

image

Данные, как и наш опыт, постоянно накапливаются и развиваются. Чтобы не отставать, наши ментальные модели мира должны адаптироваться к новым данным, некоторые из которых содержат новые измерения — новые способы наблюдать вещи, о которых раньше мы не имели представления. Эти ментальные модели мало чем отличаются от схем таблиц, определяющих, как мы классифицируем и обрабатываем новую информацию.

Это подводит нас к вопросу управления схемами. По мере того, как бизнес задачи и требования меняются со временем, меняется и структура ваших данных. Delta Lake позволяет легко внедрять новые измерения при изменении данных. Пользователи имеют доступ к простой семантике для управления схемами своих таблиц. Эти инструменты включают принудительное применение схемы (Schema Enforcement), которое защищает пользователей от непреднамеренного засорения своих таблиц ошибками или ненужными данными, а также эволюцию схемы (Schema Evolution), которая позволяет автоматически добавлять новые столбцы с ценными данными в соответствующие места. В этой статье мы углубимся в использование этих инструментов.

Понимание схем таблиц

Каждый DataFrame в Apache Spark содержит схему, которая определяет форму данных, такую ​​как типы данных, столбцы и метаданные. С помощью Delta Lake схема таблицы сохраняется в формате JSON внутри журнала транзакций.
Читать полностью »

Много строк исписано про интеграцию Телеграма и 1С. Но нигде не увидел полной инструкции по установке и настройке вебхуков. Попробую её написать.

Для всего этого нам понадобится (или правильнее будет сказать, что было использовано мной):

  1. Apache 2.2.24
  2. OpenSSL (входящий в установку апача)
  3. 1C (с модулями веб-сервера)
  4. Свой домен
  5. Созданный бот в Телеграм (не буду описывать его создание, т.к. оно достаточно тривиально)

Предполагается, что весь софт у вас установлен.
Читать полностью »

В данной статье речь пойдет об использовании открытой платформы Apache Flink для обнаружения цепочки последовательности событий. Статья подойдет как для начинающих разработчиков в области обработки потоковых данных, так и для тех, кто желает познакомиться с Apache Flink.

Ни для кого не секрет, что на данный момент существуют различные подходы к обработке, хранению, фильтрации и анализу больших данных. В отдельный класс можно выделить системы, построенные на событийной архитектуре (Event-Driven Architecture). Данные системы призваны решать различные задачи, в том числе в режимах близких к реальному времени. Одной из таких задач является обнаружение (детектирование, идентификация) сложных цепочек связанных событий на больших входных потоках данных (FlinkCEP — Pattern Detection). Обычно, данная задача, решается системами комплексной обработки событий (CEP), которые должны обрабатывать сотни, а порой и тысячи определенных пользователем шаблонов на входном потоке данных в поисках определенного события, аномалий, системах мошенничества и даже предсказании будущего на основе текущих событий. В статье речь пойдет о библиотеке FlinkCep Apache Flink, которая позволяет решать подобные проблемы.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js