Рубрика «Hadoop»

Добрый день! Меня зовут Данил Липовой, наша команда в Сбертехе начала использовать HBase в качестве хранилища оперативных данных. В ходе его изучения накопился опыт, который захотелось систематизировать и описать (надеемся, что многим будет полезно). Все приведенные ниже эксперименты проводились с версиями HBase 1.2.0-cdh5.14.2 и 2.0.0-cdh6.0.0-beta1.

  1. Общая архитектура
  2. Запись данных в HBASE
  3. Чтение данных из HBASE
  4. Кэширование данных
  5. Пакетная обработка данных MultiGet/MultiPut
  6. Стратегия разбивки таблиц на регионы (спилитинг)
  7. Отказоустойчивость, компактификация и локальность данных
  8. Настройки и производительность
  9. Нагрузочное тестирование
  10. Выводы

Читать полностью »

В нашей компании СберТех (Сбербанк Технологии) на данный момент используется HDFS 2.8.4 так как у него есть ряд преимуществ, таких как экосистема Hadoop, быстрая работа с большими объемами данных, он хорош в аналитике и многое другое. Но в декабре 2017 года Apache Software Foundation выпустила новую версию открытого фреймворка для разработки и выполнения распределённых программ — Hadoop 3.0.0, которая включает в себя ряд существенных улучшений по сравнению с предыдущей основной линией выпуска (hadoop-2.x). Одно из самых важных и интересующих нас обновлений это поддержка кодов избыточности (Erasure Coding). Поэтому была поставлена задача сравнить данные версии между собой.

Компанией СберТех на данную исследовательскую работу было выделено 10 виртуальных машин размером по 40 Гбайт. Так как политика кодирования RS(10,4) требует минимум 14 машин, то протестировать ее не получится.

На одной из машин будет расположен NameNode помимо DataNode. Тестирования будет проводиться при следующих политиках кодирования:

  • XOR(2,1)
  • RS(3,2)
  • RS(6,3)

А также, используя репликацию с фактором репликации равным 3.

Размер блока данных был выбран равным 32 Мб.
Читать полностью »

Банк — это по определению «кредитно-денежная организация», и от того, насколько успешно эта организация выдает и возвращает кредиты, зависит ее будущее. Чтобы успешно работать с кредитами, нужно понимать финансовое положение заемщиков, в чем помогают факторы кредитного риска (ФКР). Кредитные аналитики выявляют их в огромных массивах банковской информации, обрабатывают эти факторы и прогнозируют дальнейшие изменения. Обычно для этого используется описательная и диагностическая аналитика, но мы решили подключить к работе инструменты машинного обучения. О том, что получилось, читайте в посте.

Машинное обучение против кредитных рисков, или «давай, Джини, давай» - 1
Читать полностью »

В мире энтерпрайза наступило пресыщение фронтовыми системами, шинами данных и прочими классическими системами, которые внедряли все кому не лень последние 10-15 лет. Но есть один сегмент, который до недавнего времени был в статусе «все хотят, но никто не знает, что это». И это Big Data. Красиво звучит, продвигается топовыми западными компаниями – как не стать лакомым кусочком?

Распределенное хранилище данных в концепции Data Lake: с чего начать - 1

Но пока большинство только смотрит и приценивается, некоторые компании начали активно внедрять решения на базе этого технологического стека в свой IT ландшафт. Важную роль в этом сыграло появление коммерческих дистрибутивов Apache Hadoop, разработчики которых обеспечивают своим клиентам техническую поддержку. Ощутив необходимость в подобном решении, один из наших клиентов принял решение об организации распределенного хранилища данных в концепции Data Lake на базе Apache Hadoop.
Читать полностью »

Грузим терабайты бочками или SparkStreaming vs Spring+YARN+Java - 1

В рамках проекта интеграции GridGain и хранилища на базе Hadoop (HDFS + HBASE) мы столкнулись с задачей получения и обработки существенного объема данных, примерно до 80 Тб в день. Это необходимо для построения витрин и для восстановления удаленных в GridGain данных после их выгрузки в наше долговременное хранилище. В общем виде, можно сказать, что мы передаём данные между двумя распределёнными системами обработки данных при помощи распределённой системы передачи данных. Соответственно, мы хотим рассказать о тех проблемах, с которыми столкнулась наша команда при реализации данной задачи и как они были решены.

Так как инструментом интеграции является кафка (весьма подробно об этом инструменте описано в статье Михаила Голованова), естественным и легким решением тут выглядит использование SparkStreaming. Легким, потому что не нужно особо беспокоиться о падениях, переподключениях, коммитах и т.д. Spark известен, как быстрая альтернатива классическому MapReduce, благодаря многочисленным оптимизациям. Нужно лишь настроиться на топик, обработать батч и сохранить в файл, что и было реализовано. Однако в ходе разработки и тестирования была замечена нестабильность работы модуля приема данных. Для того чтобы исключить влияние потенциальных ошибок в коде, был произведен следующий эксперимент. Был выпилен весь функционал обработки сообщений и оставлено только прямое сохранение сразу в avro:
Читать полностью »

Добрый день! Меня зовут Алексей Булавин, я представляю центр компетенций Сбертеха по Big Data. Представители бизнеса, владельцы продуктов и аналитики часто задают мне вопросы по одной и той же теме — матчинг. Что это такое? Зачем и как его делать? Особенно популярен вопрос «Почему он может не получиться?» В этой статье я постараюсь на них ответить.

Проблемы матчинга и как можно с ними бороться - 1

Читать полностью »

Кейсы практического применения Больших данных
в компаниях финансового сектора

Обзор кейсов интересных внедрений Big Data в компаниях финансового сектора - 1Зачем эта статья?

В данном обзоре рассматриваются случаи внедрения и применения Больших данных в реальной жизни на примере «живых» проектов. По некоторым, особенно интересным, во всех смыслах, кейсам осмелюсь дать свои комментарии.

Диапазон рассмотренных кейсов ограничивается примерами, представленными в открытом доступе на сайте компании Cloudera.

Что такое «Большие данные»

Обзор кейсов интересных внедрений Big Data в компаниях финансового сектора - 2Есть в технических кругах шутках, что «Большие данные» это данные, для обработки которых недостаточно Excel 2010 на мощном ноутбуке. То есть если для решения задачи вам надо оперировать 1 миллионом строк на листе и более или 16 тысяч столбцов и более, то поздравляем, ваша данные относятся к разряду «Больших».

Среди множества более строгих определений приведем, например следующее: «Большие данные» — наборы данных, которые настолько объемны и сложны, что использование традиционных средств обработки невозможно. Термин обычно характеризует данные, над которыми применяются методы предиктивной аналитики или иные методы извлечения ценности из данных и редко соотносится только с объемом данных.
Читать полностью »

Несколько дней назад мы публиковали обзор первого дня Data Science Weekend 2018, который прошел 2-3 марта на Мансарде Rambler&Co. Изучив практику использования алгоритмов машинного обучения, теперь перейдем к обзору второго дня конференции, в течении которого спикеры рассказывали об использовании различных инструментов дата инженера для нужд дата-платформ, ETL, сервисах подсказок при поиске и многом другом.

Обзор второго дня Data Science Weekend 2018. Data Engineering, ETL, поисковые сервисы и многое другое - 1
Читать полностью »

Существует миф, что банки — это очень закостенелые структуры, в которых нет места эксперименту. Чтобы опровергнуть этот миф, мы провели небольшое интервью с Валерием Выборновым — начальником отдела разработки лабораторного кластера супермассивов в Сбербанк-Технологиях. У себя в команде они не боятся пользоваться всей мощью Scala, Akka, Hadoop, Spark, и даже пишут прототипы на Rust.

«Придётся писать самим. Сели и написали»: жизнь разработчиков лабораторного кластера супермассивов в Сбертехе - 1

Основные вопросы:

  • Обсуждение примера экспериментального проекта (работа с социальным графом) с техническими подробностями;
  • Используемые языки и технологии (Scala, Akka, Hadoop, Spark, Rust, и т.п.);
  • Можно ли прийти в Сбертех сразу на руководящую должность? Как там внутри всё организовано, какие есть грейды?
  • Как живётся простому разработчику? Подробности внедрения Сберджайла;

Читать полностью »

Здравствуйте, уважаемые читатели!

Мы вполне убедились в мегапопулярности глубокого обучения (Deep Learning) на языке Python в нашей целевой аудитории. Теперь предлагаем поговорить о высшей лиге глубокого обучения — то есть, о решении этих задач на языке Java при помощи библиотеки Deeplearning4j. Мы перевели для вас июньскую статью из блога компании Cloudera, где в интереснейших подробностях рассказано о специфике этой библиотеки и о глубоком обучении в Hadoop и Spark.

Приятного чтения.
Читать полностью »